Academic Course Description

BHARATH UNIVERSITY

Faculty of SCIENCE AND HUMANITIES
Department of Electrical and Electronics Engineering
BPH101- ENGINEERING PHYSICS I
FIRST Semester (ODD Semester)

Course (catalog) description

This course is to understand the impact of Crystal Physics. Learn the Properties of Elasticity and Heat transfer. Acquire Knowledge on Quantum Physics. Understand the concepts of Acoustics & Ultrasonic's and its application understand the concepts on Laser & Fibre Optics and its application.

Compulsory/Elective course : Compulsory for all branch students

Credit & Contact hours : 3 and 45 hours

Course Coordinator : Ms.Lyola

Instructors : Ms.Lyola

Name of the instructor	Class handling	Office location	Office phone	Email (domain:@ bharathuniv.ac.in	Consultation
Ms.Lyola	First year	First year Block	04422290125	physics.bharath@gmail.com	9.00-9.50 AM

Relationship to other courses:

Pre –requisites : +2 level Physics

Assumed knowledge: The students will have a physics and mathematics background obtained at a high

school (or equivalent) level.

Syllabus Contents

UNIT I: CRYSTAL PHYSICS:

9

Lattice – Unit cell – Bravais lattice – Lattice planes – Miller indices – d spacing in cubic lattice – Calculation of number of atoms per unit cell – Atomic radius – Coordination number – Packing factor for SC, BCC, FCC and HCP structures – Diamond and graphite structures (qualitative treatment)- Crystal growth techniques –solution, melt (Bridgman and Czochralski) and vapour growth techniques (qualitative)

UNIT II: PROPERTIES OF MATTER AND THERMAL PHYSICS:

Elasticity-Hooke"s law - Relationship between three modulii of elasticity (qualitative) – stress -strain diagram – Poisson"s ratio –Factors affecting elasticity –Bending moment – Depression of a cantilever – Young"s modulus by uniform bending- I-shaped girders Modes of heat transfer- thermal conductivity-Newton"s law of cooling - Linear heat flow – Lee"s disc method – Radial heat flow – Rubber tube method – conduction through compound media (series and parallel).

UNIT III: QUANTUM PHYSICS:

9

Black body radiation – Planck"s theory (derivation) – Deduction of Wien"s displacement law and Rayleigh – Jeans" Law from Planck"s theory – Compton effect. Theory and experimental verification – Properties of Matter waves – G.P Thomson experiment-Schrödinger"s wave equation – Time independent and time dependent equations – Physical significance of wave function – Particle in a one dimensional box - Electron microscope - Scanning electron microscope - Transmission electron microscope.

UNIT IV: ACOUSTICS AND ULTRASONICS:

9

Classification of Sound- decibel- Weber–Fechner law – Sabine"s formula- derivation using growth and decay method – Absorption Coefficient and its determination –factors affecting acoustics of buildings and their remedies. Production of ultrasonics by magnetostriction and piezoelectric methods - acoustic grating - Non Destructive Testing – pulse echo system through transmission and reflection modes - A,B and C – scan displays, Medical applications – Sonogram.

UNIT V: PHOTONICS AND FIBRE OPTICS:

9

Spontaneous and stimulated emission- Population inversion -Einstein"s A and B coefficients - derivation. Types of lasers – Nd:YAG, CO2, Semiconductor lasers (homojunction & heterojunction)- Industrial and Medical Applications. Principle and propagation of light in optical fibres – Numerical aperture and Acceptance angle - Types of optical fibres (material, refractive index, mode) – attenuation, dispersion, bending - Fibre Optical Communication system (Block diagram) - Active and passive fibre sensors-Endoscope.

TEXT BOOKS:

- 1. Jayaraman D Engineering Physics I. Global Publishing House ,2014.
- 2. Marikani A. Engineering Physics. PHI Learning Pvt., India, 2009.
- 3. Palanisamy P.K. Engineering Physics. SCITECH Publications, 2011.

REFERENCES:

- 1. Searls and Zemansky. University Physics, 2009
- 2. Arumugam M. Engineering Physics. Anuradha publishers, 2010.
- 3. Gaur R.K. and Gupta S.L. Engineering Physics. Dhanpat Rai publishers, 2009.

Computer usage: Nil

Professional component

General - 0%
Basic Sciences - 100%
Engineering Sciences & Technical Arts - 0%
Professional Course - 0%

Broad area: photonics and fibre optics, Acoustics and ultrasonics and Properties of matter and thermal physics

Test Schedule

S. No.	Test	Tentative Date	Portions	Duration
1	Cycle Test-1	August 1 st week	Session 1 to 18	2 Periods
2	Cycle Test-2	September 2 nd week	Session 19 to 36	2 Periods
_	3,010 1000 2			2 1 0110 00
3	Model Test	October4 th week	Session 1 to 45	3 Hrs
4	University Examination	TBA	All sessions / Units	3 Hrs.

Mapping of Instructional Objectives with Program Outcome

To enhance the fundamental knowledge in Physics and its applications relevant to various streams of Engineering and	Cor	Correlates to program outcome	
Technology. This course emphasizes:	Н	M	L
To understand the impact of Crystal Physics.	O,j	g	
Learn the Properties of Elasticity and Heat transfer.	C,l	e,i	b,k
Acquire Knowledge on Quantum Physics.		C,f	a,g
Understand the concepts of Acoustics & Ultrasonic's and its application	a	C,l	j
Understand the concepts on Laser & Fibre Optics and its application.			b,c,k,l

Draft Lecture Schedule

Session	Topics	Problem Solving (Yes/No)	Text / Chapter		
Unit -I: Crystal Physics					
1.	Introduction Lattice – Unit cell – Bravais lattice – Lattice planes	No			
2.	Miller indices – d spacing in cubic lattice	Yes			
3.	Calculation of number of atoms per unit cell – Atomic radius – Coordination number – Packing factor for SC	Yes			
4.	Calculation of number of atoms per unit cell – Atomic radius – Coordination number – Packing factor for BCC	Yes	[T1] Chapter -1,		
5.	Calculation of number of atoms per unit cell – Atomic radius – Coordination number – Packing factor for FCC	Yes			
6.	Calculation of number of atoms per unit cell – Atomic radius – Coordination number – Packing factor for HCP	Yes			
7.	Crystal growth techniques –solution,	No			
8.	Crystal growth techniques – melt (Bridgman and Czochralski)	No			
9.	Crystal growth techniques vapour growth techniques (qualitative)	No			
Unit- II : P 10.	roperties Of Matter And Thermal Physics Introduction Elasticity-Hooke"s law - Relationship between three modulii of elasticity	No			
11.	stress -strain diagram – Poisson"s ratio	No			
12.	Factors affecting elasticity –Bending moment	No	7		
13.	Depression of a cantilever –Young"s modulus by uniform bending ,I-shaped girders Page 4 of 9	Yes	[T1] Chapter -2		

14.	Modes of heat transfer- thermal conductivity-	No	
15.	Newton"s law of cooling	Yes	
16.	Linear heat flow – Lee"s disc method	Yes	
17.	Radial heat flow – Rubber tube method	Yes	
18.	conduction through compound media (series and parallel)	No	
Unit -III	Quantum Physics		
19.	Introduction -Black body radiation Compton effect	No	
20.	Planck"s theory (derivation)	Yes	
21.	Deduction of Wien"s displacement law and Rayleigh – Jeans" Law from Planck"s theory	Yes	
22.	Theory and experimental verification— G.P Thomson experiment	No	[T1]Chapter-3
23.	Schrödinger"s wave equation – Time independent equations	Yes	
24.	Schrödinger"s wave equation –time dependent equations	Yes	
25.	Physical significance of wave function – Particle in a one dimensional box	Yes	
26.	- Electron microscope - Scanning electron microscope	No	
27.	Transmission electron microscope	No	
Unit –IV-	Acoustics And Ultrasonics		I
28.	Introduction Classification of Sound- decibel- Weber–Fechner law	No	[T1]Chapter-5,6
29.	Sabine"s formula-	Yes	[TT]emapter 5,6
30.	derivation using growth and decay method	Yes	
31.	Absorption Coefficient and its determination –factors affecting acoustics of buildings and their remedies.	No	
32.	Production of ultrasonics by magnetostriction	No	
33.	Production of ultrasonics by piezoelectric methods	No	
34.	acoustic grating -Non Destructive Testing	No	
35.	pulse echo system through transmission and reflection modes - A,B and C – scan displays	No	

36.	Medical applications – Sonogram.	No	
Unit-V P	hotonics And Fibre Optics		
37.	Introduction-Spontaneous and stimulated emission-Population inversion	No	
38.	-Einstein"s A and B coefficients - derivation.	Yes	
39.	Types of lasers – Nd:YAG, CO2	No	
40.	Semiconductor lasers (homojunction & heterojunction	No	
41.	Industrial and Medical Applications	No	[T1] Chapter 7,8
42.	Principle and propagation of light in optical fibres – Numerical aperture and Acceptance angle	Yes	
43.	Types of optical fibres (material, refractive index, mode) attenuation, dispersion, bending	No	
44.	Fibre Optical Communication system (Block diagram)	No	
45.	Active and passive fibre sensors- Endoscope	No	

Teaching Strategies

The teaching in this course aims at establishing a good fundamental understanding of the areas covered using:

- Formal face-to-face lectures
- Tutorials, which allow for exercises in problem solving and allow time for students to resolve problems in understanding of lecture material.
- Laboratory sessions, which support the formal lecture material and also provide the student with practical construction, measurement and brainstorming skills.
- Small periodic quizzes, to enable you to assess your understanding of the concepts.

Evaluation Strategies

 Cycle Test – I
 5%

 Cycle Test – II
 5%

 Model Test
 10%

 Assignment
 5%

 Attendance
 5%

 Final exam
 70%

Prepared by: Dated:

Ms.Lyola

Addendum

ABET Outcomes expected of graduates of B.Tech / EEE / program by the time that they graduate:

- a) An ability to apply knowledge of mathematics, science, and engineering fundamentals.
- b) An ability to identify, formulate, and solve engineering problems.
- c) An ability to design a system, component, or process to meet the desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability.
- d) An ability to design and conduct experiments, as well as to analyze and interpret data.
- e) An ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.
- f) An ability to apply reasoning informed by the knowledge of contemporary issues.
- g) An ability to broaden the education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context.
- h) An ability to understand professional and ethical responsibility and apply them in engineering practices.
- i) An ability to function on multidisciplinary teams.
- i) An ability to communicate effectively with the engineering community and with society at large.
- k) An ability in understanding of the engineering and management principles and apply them in project and finance management as a leader and a member in a team.
- 1) An ability to recognize the need for, and an ability to engage in life-long learning.

Program Educational Objectives

PEO1: PREPARATION

Electrical Engineering Graduates are in position with the knowledge of Basic Sciences in general and Electrical Engineering in particular so as to impart the necessary skill to analyze and synthesize electrical circuits, algorithms and complex apparatus.

PEO2: CORE COMPETENCE

Electrical Engineering Graduates have competence to provide technical knowledge, skill and also to identify, comprehend and solve problems in industry, research and academics related to power, information and electronics hardware.

PEO3: PROFESSIONALISM

Electrical Engineering Graduates are successfully work in various Industrial and Government organizations, both at the National and International level, with professional competence and ethical administrative acumen so as to be able to handle critical situations and meet deadlines.

PEO4: SKILL

Electrical Engineering Graduates have better opportunity to become a future researchers/ scientists with good communication skills so that they may be both good team-members and leaders with innovative ideas for a sustainable development.

PEO5: ETHICS

Electrical Engineering Graduates are framed to improve their technical and intellectual capabilities through life-long learning process with ethical feeling so as to become good teachers, either in a class or to juniors in industry.

BPH101- ENGINEERING PHYSICS I

Course Teacher	Signature
Ms.Lyola	

Course Coordinator	Н	D/EEE
(Ms.Lyola)	()